
Developing Principles of GUI Programming Using Views
Judith Bishop

Department of Computer Science
University of Pretoria, Pretoria 0002

 South Africa
jbishop@cs.up.ac.za

Nigel Horspool
Department of Computer Science

University of Victoria, Victoria,
Canada V8W 3P6

nigelh@uvic.ca

ABSTRACT
This paper proposes that GUI development is as important as
other aspects of programming, such as a sound understanding of
control structures and object orientation. Far less attention has
been paid to the programming structures for GUIs and certainly
there are few cross language principles to aid the programmer.
We propose that principles of GUIs can be extracted and learnt,
and that they do enhance good programming practice. These
principles have been implemented in our Views system which
features an XML-based GUI description notation coupled with an
engine that shields the programmer from much of the intricate
complexity associated with events, listeners and handlers. The
system is programmed primarily in C# for .NET, but is available
in various forms for Java and for other platforms which support
.NET through the SSCLI.

Categories and Subject Descriptors
D.3.2 C# I.7.2 XML, D.1.5 object oriented programming, D.1.0
General, D.3.3 Constructs and features, D.1.7 Visual
programming.

General Terms - Languages
Keywords - graphical user interfaces, event-based
programming, XML, platform independence.

1. INTRODUCTION
The purpose of this paper is to advance the state of the art of the
development of graphical user interfaces (GUIs). In teaching
programming, we like to stick to principles and to avoid, as much
as possible, language specific and especially platform specific
issues. The term principles is most often held to encompass
control structures, data structures and object-orientation.
However, for both introductory and industrial strength programs,
input-output is as important a concept as a component and, in this
day and age, input-output should definitely be GUI based.
Very little work has appeared on the principles of GUI
development. By GUI development, we mean the manner in
which a programmer realizes within a program the interaction (the
I) that will take place with the user (the U) via graphical

components (the G). Development follows from design. It should
be stressed that we are not concerned here with design of GUIs –
that is a whole area on its own and has been extensively studied
by the HCI community.
Our premise is that, even for small programs, a GUI can be
specified separately, and then linked in a coherent way to the rest
of the computational logic of the program. The current practice is
for GUIs to be specified by creating objects, calling methods to
place them in the correct places in a window, and then linking
them to code that will process any actions required. If hand-
coded, such a process is tedious and error-prone. If a builder or
designer program is used, hundreds of lines of code are generated
and incorporated into one’s program, labeled “do not touch”,
which does not aid the understanding of principles at all.
With the advent of Java and .NET, the possibilities for cross
platform and cross language computing have increased greatly.
However, libraries which support GUIs have, for the most part,
not been included in this advance. For example, in the shared
source version of .NET, the Windows.Forms API is specifically
excluded [4]. There is therefore an opportunity to provide
something that will travel better. Rather than design a new library
– which would suffer from the same problems as other libraries –
an alternative is to use XML for the specification. XML has the
advantage that it is universal, and can be written by hand or
emitted from a tool very easily.
The paper has two main sections. We start by defining a set of
principles for GUIs. These are intended to be universal, and to be
at a level where they could be taught in a lecture or two prior to
the beginning of a section on GUI programming in an
introductory course. We then follow with a section on the Views
system, showing how the principles can be implemented, thus
making GUIs reusable, adjustable and separately maintainable.
We end by considering other work in the area to date.

2. GUI ELEMENTS
One of the problems of extracting a set of principles for GUIs is
that many of the terms are already language specific. However,
this confusion is not confined to GUIs: consider that we have case
versus switch statements and base vs super classes. We will
choose and stick to one set of terms, initially giving the
alternatives. A GUI consists of the following five parts:

• controls (or components or widgets)
• a window (or form or frame)
• a menu bar
• layout
• interaction

A GUI is seen as a window on the screen and contains a number
of different controls. Controls can, for example, be labels, buttons

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.

Copyright 2004 ACM 1-58113-798-2/04/0003…$5.00.

or text boxes. The GUI very likely has a menu bar across the top
which typically contains the name of the program or window and
buttons for hiding, resizing and destroying the GUI display.
Additional options can be added to the menu bar. The menu bar
offers options similar to controls, but it is different in the way in
which it is created and displayed.
The controls are said to have a certain layout which defines their
position relative to each other and/or directly in the window. Both
the choice of the controls and their correct layout are the concern
of the programmer, even if a GUI design is specified.
Once the controls are on the screen, we interact with some of
them via devices such as the mouse and keyboard. Moving the
mouse over a control, and then clicking can make things happen
(as with a button). At other times, we can be in a control that
allows us to type from the keyboard. Other controls define areas
for outputting data, including text, images, video and sound. It is
this area of interaction that is the most challenging in GUI
development, and to which we shall return in Section 3.

2.1 Controls
Most languages offer upwards of 30 or 40 controls, each with
numerous options or attributes. These attributes can be size, color,
font type and so on. The attributes are set at the time the control is
created, but in most systems, they can be changed dynamically.
For example, a text box created as

TextBox password = new TextBox();

can later have its background set to yellow by:
password.BackColor = Color.Yellow;

Enumerating all the controls and all their attributes, even for one
language, is a large task, but in fact the beginning programmer
should be introduced to the variety on offer, since the appropriate
choice of a control is important. For example, if we want to have
an image and be able to click on it, we could use a button and set
the image attribute, or we could use a picture box, which can
respond to double clicking on the image specified. The picture
box has extra scaling facilities, so the developer would have to
choose.

A set of principles regarding controls would contain a
compendium indexed not only by control names, but by
attributes, such as clickability. Then the programmer can see what
controls have this attribute, and can make an appropriate choice.
Not all languages will have the same set of matches for controls
and attributes, but at least, having learnt the principles, the
developer knows what to look for.

2.2 Layout
When developing a GUI, we can just add controls to the window
as we think of them, but that would not usually make for a very
pleasing arrangement. A key feature of GUI design is to group
similar controls together. Thus a designer could stipulate that all
the buttons be at the top, or at the bottom of the window. We can
split the screen in half, and have input boxes on one side, and
output on another, and so on. The question is, how does the
developer manipulate controls like this? There are three options.

2.2.1 Drag and drop.
We can use a tool which allows us to create the code for a GUI by
dragging a control from a list showing all the possibilities and

dropping it onto the spot which looks right visually. We can
change the placement of controls by dragging them with the
mouse, and change their sizes and other attributes just as easily.
Such tools are actually very sophisticated pieces of software and
take a lot of room on a computer. An example is Visual Studio
which is built specifically for C# and other languages on the
Windows platform. It generates C# code which uses advanced
features such as events and delegates and is labeled “do not
touch”. For a course aimed at teaching principles, such an
approach is less than ideal.

2.2.2 Absolute positioning.
Without using drag and drop, we can write calls to library
methods which precisely position a control down to the last pixel.
The code to place a button at position x=300, y=150 would be
something like the following:

Button submit = new Button();
submit.Location = new Point(300, 150);

which in itself is not difficult to write or understand, but working
with many controls in absolute coordinates brings with it many
extra small details to specify, and can become very long-winded.
Another problem is that some screens these days are bigger than
the earlier standard 600×800, in which case absolute positioning
has to be done most carefully to obtain results which look good
across a variety of computers.

2.2.3 Relative positioning
Relative positioning was popularized in the form of Java’s layout
managers. They offer standard arrangements such as flow, border
and grid, into which components can be placed, with the system
handling the actual positioning of components with suitable gaps
between them. For most GUIs they work very well, though they
can have the same scaling problem mentioned above.

2.3 Interaction
Definition and layout of controls is mostly a static exercise.
Interaction is dynamic, in that it will continue through the life of
the program, and requires careful programming to cover all
possibilities.
Creating an instance of window object causes the GUI to be
displayed on the computer’s screen. The program can then wait
for the user to do something, such as to click a button or type
some text. The part of the program which receives such a prompt
is known by the general term of an event handler. Event handlers
are typically methods which are passed a parameter identifying
the particular control that was activated. Then the handler can
decide what to do about it. Active controls such as buttons should
definitely have handlers, whereas potentially passive ones such as
labels and images need not.
Event handlers are linked to controls early in the life of a program
by means of the process of listening. Listeners essentially watch
one or more controls and, when an action takes place, activate all
registered event handlers. Once in a handler, we can interact with
a control by calling methods defined to get data from it and put
data into it. The selection of methods available depends on the
language and library.
The interplay between listeners and handlers is the most complex
part of GUI programming because it usually involves higher-order

programming constructs, such as delegates or callbacks, and the
previously assumed sequential ordering of statements is disrupted.
The confusion caused in the mind of the developer can be
alleviated by a better division of responsibility, as discussed in the
next section.

3. INDEPENDENT GUIs
Given that principles of GUIs can be explained, as in Section 2,
the next challenge is to see whether these principles can be
implemented in a language- and platform-independent way. The
advantages of such a system would be:

• reuse of GUIs between systems,

• independent development of GUIs,

• better understanding of programming techniques,

• standardization of GUI notations.

The first three are in fact similar to advantages often quoted for
objects. One of the biggest forces in the acceptance of object
orientation in industry was its coupling to a standardized notation,
and we look to developing the same for GUIs. It should be
possible to have an assignment or a project which starts off:
“given the following GUI design written in standard notation,
write a GUI-based program/system to …”. At present, the
development of the GUI is definitely seen as an added extra, and
very often developers are caught up in the conundrum of spending
time on an aspect of the system which may not deliver much in
the way of marks or revenue, but which is immensely satisfying
and rounds off the project.
Once again we stress the difference between design and
development. Programmers should be able to develop GUIs, but
not all of them will be adept at good design. There should be a
way of encapsulating GUI designs in specifications, in the same
way as UML captures program design.

3.1 Views – a GUI system
We have developed a GUI notation and complete system to
implement the principles described above. Views – a Vendor
Independent Extensible Windowing System – consists of:

• an XML-based notation for specifying GUIs, and

• an engine for supplying listeners and interacting with
event handlers.

Views is designed to be language and platform independent,
although the choice of control names is closer to that of Microsoft
Windows.Forms than to Java or other systems. The main engine
runs in C# on Windows, but it has been ported to Java and to
Tcl/TK, which makes it available for all the languages in the
.NET platform, and on all the platforms on which .NET runs
through the SSCLI (e.g. Unix, Macintosh). Other systems similar
to Views are described in the section on Related Work.

Consider the development of a GUI as shown in Figure 1. We
assume that a designer or builder program is used to drag and
drop controls and set their attributes. The program will also
usually permit the linking up of handler methods, or the
programmer must do this himself or herself. At runtime, the
controls are rendered (drawn) on the screen by the operating
system, and interaction with them is passed on to the handlers.
The developer is responsible for three parts of the process, and

has to take on board hundreds of lines of generated code from the
builder program.

Figure 1. GUI development with a builder

In Views, we take a different approach, as shown in Figure 2.

Figure 2. GUI development with Views

Here, the GUI is specified in XML. It is possible to do this fairly
simply by hand, or one can have a tool which produces the XML.
The effect for reuse and independence is the same. The XML is
accepted, checked and used by the engine to cause the drawing of
the controls in the window. The engine is also responsible for
defining and maintaining the listeners for the controls specified.
The developer’s task is now reduced to just providing handlers,
and there is no injected code in the application itself.

3.2 Example
Full details of the Views notation are given on the website [8] and
in the book on programming which uses it [1]. The example that
follows is very simple and is intended to be a vehicle for
explaining the Views idea, rather than expounding on its
considerable options and power.
We start with a simple program to read some numbers and
calculate an exchange rate. In line-oriented mode in C#, this
would be:

void TextGo() {
 Console.WriteLine("Currency Calculator");
 double euro, GBP;
 for (string c = "Y"; c!="N";
 c = Console.ReadLine()) {
 Console.Write("Paid on hols: ");
 euro = double.Parse(Console.ReadLine());

GUI Builder

Add to Listeners

 Handlers

calls to
make
controls

Application

Application

Handler

control
rendering
in the OS

Control
Engine

Add Listeners

GUI

XML

Spec

 Console.Write("Charged on credit card: ");
 GBP = double.Parse(Console.ReadLine());
 Console.WriteLine("Exchange rate is {0:G}",
 euro/GBP);
 Console.Write("More? ");
 }
}

We do not have room for a hand or builder-made version, but here
is the Views version.

void GuiGo(string spec) {
 Views.Form f = new Views.Form(spec);
 double euro, GBP;
 for (string c = f.GetControl(); c!=null;
 c = f.GetControl()) {
 euro=double.Parse(f.GetText("eurobox"));
 GBP =double.Parse(f.GetText("GBPbox"));
 f.PutText("ratebox",
 (euro/GBP).ToString("f"));
 }
 f.CloseGUI();
}

When GuiGo is invoked with the following specification string as
its parameter, the GUI shown below is displayed.

static string specEn =
 @"<form Text='Currency calculator'>
 <horizontal>
 <vertical>
 <Label text='Paid on hols'/>
 <Label text='Charged'/>
 <Label text='Exchange rate is'/>
 <Button Name=equals Text='='/>
 </vertical>
 <vertical>
 <TextBox Name=eurobox/>
 <TextBox Name=GBPbox/>
 <TextBox Name=ratebox/>
 </vertical>
 </horizontal>
</form>";

When GuiGo is called, the Views window (called a form) is first
created as an object. Next there is a loop which gets the next
control that has been activated and exits if the control is null.
Views returns a null value if the close box on the window is
clicked, thus uniting the behavior of the user with the program.

Thereafter we interact with the text boxes through GetText and
PutText methods. The two programs are remarkably similar in
their algorithm structure, but observe that there is no GUI data
included in the second. That enhances separation of concerns, and
means that both the design of the GUI and text in the window
could change completely without changing the program.

Consider now the Views specification. Views works on relative
position, but not via flow managers. Instead it has the concept of
nested vertical and horizontal lists. Here we have a horizontal list
of two items, and the first has four items and the second three.
Each control is identified by an XML tag and followed by
attributes. For dynamic controls, a name must be specified, which
becomes the name by which the control is referred to in the
program. All the other attributes are defaulted. The XML has
been relaxed so that it is easier to write as a C# string constant
and Views provides an extensive error checking process to ensure
that GUI specifications can be debugged.

To show the power of an XML-based approach, we can supply a
different specification string to the GuiGo method, and the
following GUI will be displayed instead:

In this case, the font attributes were used to increase the font size,
and the button was moved more centrally.

3.3 Event handling
This very simple example showed a GUI using sequential
processing: Each item must be entered in turn, and is read and
calculated as specified. GUI programming involves far more, as
described in Section 2. Essentially, the user is in charge, and can
activate controls in any order. The program is written in such a
way as to be able to react to these controls seemingly at random.
There are two ways in which this can be done:

• an event loop, and

• call back methods.

Views supports both, but advocates the first. Support for callbacks
is supplied more for those who are already at ease with that
technique. The event loop works by wrapping the statements in a
switch statement, dividing them up as reflects the logic required.
In our simple example, all of the action would fall under the
equals control. To emphasize what an event loop is, we assume a
second button, reset, has been added. The loop within GuiGo
would become:

 for (string c = f.GetControl(); c!=null;
 c = f.GetControl()) {
 switch (c) {
 case "reset":
 euro=1; GBP=1;
 f.PutText("eurobox",euro.ToString("f"));
 f.PutText("GBPbox",GBP.ToString("f"));
 break;
 case "equals":
 euro=double.Parse(f.GetText("eurobox"));
 GBP =double.Parse(f.GetText("GBPbox"));
 f.PutText("ratebox",
 (euro/GBP).ToString("f"));

 break;
 default: break;
 }
 }

The action is quite clear: the loop processes activated controls as
they arrive, and the switch directs the action based on the name of
the control. The name is the same name as that used in the Views
specification. Thus, for example, we had

<Button Name=equals Text='='/>

In the C# code above, the use of switch on strings is particularly
useful, but other ways of switching can also be employed in other
languages. How Views provides for callbacks is discussed next.

3.4 Callbacks
As shown in Figure 2, Views handles the association between
controls and handlers. Using the recommended programming
style in [1], as shown in the example, there is one point of contact
between the engine which listens for events and the program. That
point is the for statement, which has the clause

string c = f.GetControl();

In the alternative callback model, which is that used by Java and
C# (when not supported by Views), there are potentially many
points of contact. Each control must be linked to a method on
creation. In the builder for C#, a statement for a simple button
would be generated as follows:

this.button1.Click += new
 System.EventHandler(this.button1_Click);

Unpacking this statement, we have the control button1, which has
a listener called Click. The listener is represented in C# by a
special object called an event. The event handler method which
the programmer must supply is called button1_Click. The method
is linked up via the delegate EventHandler which accepts
registrations of methods for events. The signature of
button1_Click is also prescribed as:

private void button1_Click(object sender,
 System.EventArgs e)

This syntax is different to Java’s which has system wide event
handlers for certain types of events, and within each handler, the
programmer must sort out what control caused the event.

If one wished to use this model in Views, the process is simple.
Each attribute available to a control can be set in the specification.
Thus it is possible to augment the button declaration as:

<Button Name=equals Text='='
 Click=equalsHandler/>

However, there are potentially race conditions within the engine if
both models are used simultaneously. We are still investigating
whether these can be satisfactorily resolved, or even whether it
makes sense to have both models operational at the same time.

4. RELATED WORK
There has been little or no work done on the categorization of
GUI controls and the establishment of principles of layout
handling. In other areas, APIs had more attention paid to them, as
in the case of the database library which has been incorporated
into a new language, XEN [2].

Interaction has been studied in more depth and the most thorough
work is that of Meyer [3] who proposes a simple to use publish-
subscribe library and compares it to the C# delegate model
discussed here.
There are two other major efforts for introducing independent
XML based GUI specifications to languages. The first is XUL [7]
which is Java-oriented. It has controls which reflect those of Java,
and the handlers are written in the specification itself, in
JavaScript. Its platform independence is thus achieved via Java.
The other is UIML [5] which also has a Java flavor, and whose
handlers are intended to be written in XML, which is almost
impossible to do without tools. The difference between these two
initiatives and Views is where the line is drawn for the
specification of handlers. In Views, we regard them as being part
of the application, solely within the realm of the programmer. The
specification and layout of the GUI is what is XML-based, and
could be written separately and reused.

5. CONCLUSIONS
We have proposed that GUIs should be viewed as having
principles related to their elements (controls, menu bars,
positioning) and their interaction with the user. While principles
regarding good GUI design are well-established, principles
regarding which programming structures to use with them are not.
Moreover, some of these, particularly for interaction, are too
complex for the average programmer, and the approach of using a
GUI builder hides the very principles that one wishes to expose.
Our Views system espouses GUI principles and provides a clear
separation of concern between the display of the GUI and the
interaction with the program. It is therefore possible to separately
develop GUIs, and to reuse, adapt and maintain them easily.
Our work on the initial Views system has been completed. It
included some intricate programming with reflection, XML
parsing and regular expressions. We are now concentrating on
unifying the availability of Views on the SSCLI platform of .NET
and of re-investigating our earlier Java version.

ACKNOWLEDGMENTS
We thank Microsoft Research for their interest in and generous
support, our students who assisted with programming and testing
the system, and the NFR for financial support.

REFERENCES
[1] Bishop, J., and Horspool, N. C# Concisely, Addison Wesley,

2004.
[2] Meijer, E., and Schulte. W. Xen and the Art of Coherence

Maintenance (in preparation).
[3] Meyer, B., The power of abstraction, reuse and simplicity:

an object-oriented library for event-driven design, to appear
in Festschrift in Honor of Ole-Johan Dahl, eds. Olaf Owe
et al., Springer-Verlag, LNCS 2635, 2003.

[4] Stutz, D., Neward, T., and Shilling, G. Shared Source CLI
Essentials, O’Reilly, 2003.

[5] UIML website. http://www.uiml.org/index.php
[6] Views website. htpp://www.cs.up.ac.za/rotor
[7] XUL website. http://www.xulplanet.com/
[8] C# Concisely website. http://csharp.cs.uvic.ca

